The centroidal branches of a separable graph are edge reconstructible

نویسنده

  • Robert Molina
چکیده

If T is a tree, then the weight of a vertex v in T is the number of vertices in a largest component of T − v. The centroid of a tree is the set of vertices of minimum weight. We show that if G is a separable graph then there is a unique block or cutvertex that contains the centroids of all spanning trees of G. We define this block or cutvertex to be the centroid of G. We show that the centroid and rooted branches of the centroid are edge reconstructible, that is, determined up to isomorphism by the set of edge deleted subgraphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of the set of branches of a graph

It is proved that the set of branches of a graph G is reconstructible except in a very special case. More precisely the set of branches of a graph G is reconstructible unless all the following hold: (1) the pruned center of G is a vertex or an edge, (2) G has exactly two branches, (3) one branch contains all the vertices of degree one of G and the other branch contains exactly one end-block. Th...

متن کامل

Reconstructing graphs from their k-edge deleted subgraphs

A graph H is an edge reconstruction of the graph G if there is a bijection p from E(G) to E(H) such that for each edge e in E(G), G\e is isomorphic to EI\fi(e). (Here G\e denotes the graph obtained from G by deleting the edge e.) We call G edge reconstructible if any edge reconstruction of G is isomorphic to G. The well-known edge-reconstruction conjecture, due to Harary [4], asserts that any g...

متن کامل

Strong Reconstructibility of the Block - Cutpoint Tree

It is shown that the multiset of reconstruction trees of the connected components of a graph is strongly reconstructible. It is then shown, that an annotated version of the block-cutpoint tree is strongly reconstructible. A refinement of this result is given. Some cases of reconstructibility of separable graphs are given. A conjecture which implies the graph reconstruction conjecture is given. ...

متن کامل

Edge Reconstruction of the Ihara Zeta Function

We show that if a graph G has average degree d ≥ 4, then the Ihara zeta function of G is edge-reconstructible. We prove some general spectral properties of the Bass–Hashimoto edge adjancency operator T : it is symmetric on a Kreı̆n space and has a “large” semi-simple part (but it can fail to be semi-simple in general). We prove that this implies that if d > 4, one can reconstruct the number of n...

متن کامل

Edge pair sum labeling of some cycle related graphs

Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 179  شماره 

صفحات  -

تاریخ انتشار 1998